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Abstract We have recently proposed sedimented solute

NMR (SedNMR) as a solid-state method to access bio-

molecules without the need of crystallization or other

sample manipulation. The drawback of SedNMR is that

samples are intrinsically diluted and this is detrimental for

the signal intensity. Ultracentrifugal devices can be used to

increase the amount of sample inside the rotor, overcoming

the intrinsic sensitivity limitation of the method. We

designed two different devices and we here report the

directions for using such devices and the relevant equations

for determining the parameters for sedimentation.
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Solution NMR is a crucial tool for structural biology,

allowing for atomic-level determination of structure and

dynamics of biomolecules. The recent advances in theo-

retical background (Hu et al. 2011; Loening et al. 2012;

Bjerring et al. 2012; Nielsen et al. 2012) and in the sample

preparation (Lewandowski et al. 2011a; Akbey et al. 2012)

have brought solid state NMR to compete with state-of-the-

art solution NMR for the determination of structure (Ber-

tini et al. 2010a; Knight et al. 2011; Luchinat et al. 2012;

Huber et al. 2012) and dynamics (Lewandowski et al. 2010,

2011b) for micro-to nanocrystalline systems, and even in

the case of systems lacking long-range order like fibrils

(Petkova et al. 2002; Tycko and Ishii 2003; Debelouchina

et al. 2010; Bertini et al. 2011a; Lewandowski et al. 2011c;

Bayro et al. 2011; Parthasarathy et al. 2011) or insoluble

aggregates (Sun et al. 2009; Loquet et al. 2010).

Anyway, there is a wealth of systems that result inac-

cessible to these techniques for a number of reasons that

are summarized in the following paragraphs.

Very large biomolecular assemblies have long rotational

correlation times, resulting in broadening of the solution

NMR lines beyond detection (Wider 2005; Fernández and

Wider 2003; Riek et al. 1999; Fiaux et al. 2002; Guo et al.

2008; Tugarinov et al. 2006, 2005a, b; Bermel et al. 2007,

2008, 2010). To solve this problem, specific sample
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preparation and labelling schemes were proposed (Tugar-

inov et al. 2006; Matzapetakis et al. 2007). In many cases,

solid state NMR requires the sample to be crystalline, with

defined levels of hydration to achieve good resolution

(Martin and Zilm 2003). The crystal contacts can perturb

the native structure of the protein (Barbato et al. 1992;

Fischer et al. 1999; Skrynnikov et al. 2000; Chou et al.

2001; Poon et al. 2007; Bertini et al. 2008, 2009). Finally,

the larger the system, the more difficult the crystallization

becomes.

Manipulation of the sample (i.e. precipitation, freezing

or lyophilisation) is known to deteriorate the quality of the

spectra (Martin and Zilm 2003; Linden et al. 2011; Pauli

et al. 2000).

In this scenario, sedimented solute NMR (SedNMR)

(Bertini et al. 2011b, 2012; Polenova 2011) can be regar-

ded as a simple way to select the best of both worlds: the

sample can be kept in the buffer that is used for the solution

studies and the possible addition of interaction partners can

be followed like in a common NMR titration; the system is

always hydrated enough and its size turns from foe to

friend.

Anyway the method suffers from the intrinsic sensitivity

limitation that comes from having a solution (although

concentrated) sealed in the volume (2–50 ll) of a solid

state NMR rotor. The concentration can optimistically

arrive to 60 % of the corresponding crystal in highly sol-

uble proteins such as BSA (Lundh 1980, 1985; Andersson

and Hovmoller 2000).

In addition to the volume limitation, the 1.3 rotor, that

can be used to achieve high resolution spectra (Bertini et al.

2010b; Knight et al. 2011; Webber et al. 2012) and site-

specific dynamics information (Lewandowski et al. 2010;

2011b), suffers from its smaller internal radius that requires

higher molecular weights for sedimentation as compared to

the other rotors (Bertini et al. 2012).

We thus proposed (Bertini et al. 2012) the use of

ultracentrifugal devices like the one described by Böck-

mann et al. (2009) to increase the amount of sample in the

rotor. This approach was later used by Gardiennet et al.

(2012) for sedimenting a 59 kDa dodecameric helicase

(total molecular weight 708 kDa).

The scheme for the design of devices of this type is the

following:

• A reservoir for increasing the amount of solution, thus

allowing for more diluted solutions to be used;

• A funnel to convey the pellet into the rotor;

• A tight junction based on o-ring for sealing;

• A jacket made in delrin� or vespel� to prevent rotor

shattering during the ultracentrifugation;

• A housing for the rotor that is as close to the bottom of

the tube as possible.

The position of the bottom of the rotor (b4 in Fig. 2) and

of the top of the solution (b0 in Fig. 2) will determine the

effective clearing factor of the ultracentrifugation, i.e. the

time efficiency of the process, according to Eq. 4).

We here report the design of two centrifugal devices

with different geometries (Fig. 1a, b). Both of them can be

used in SW32Ti rotor for Optima type floor preparative

ultracentrifuge (Beckman Coulter) at the maximum speed

(32,000 rpm).

Device 1 (Bruker Karlsruhe) has a light polycarbonate

funnel fitted into an outer aluminium funnel. This device

has an internal volume of 20 ml, allowing for the use of

less concentrated solutions. The polycarbonate funnel must

be cut to the proper level in order to avoid crushing during

the centrifugation.

Device 2 (Experimental Physics Workshop, University

of Florence) is made in delrin� acetal resin. The device

does not have a soft funnel so it does not require any

manipulation, and delrin is resistant to corrosion as

opposed to aluminium, so that the device can be cleaned

through acids and bases, as required for some toxic pro-

teins. Anyway, the internal volume is 1.38 ml, thus the

device can only be used for concentrated solutions.

The amount of the macromolecule that will get into the

pellet is given by the Eq. 1 (Bertini et al. 2012):

cðhÞ ¼ cl

Ae�kh2 þ 1
ð1Þ

where h is the distance from the rotation axis, cl the limiting

concentration of the macromolecule [experimentally found

to be approximately 700 mg/ml for proteins (Lundh 1980,

1985)], k is given by:

k ¼ M 1� qsolvent=qbiomoleculeð Þx2

2RT
ð2Þ

and A is an integration constant that needs to be determined

according to the law of concentration of mass:

Fig. 1 a View of the components of device 1; b view of the

components of device 2
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where the meaning of the parameters r1, r2, r3 and hp and of

the integration limits is shown in Fig. 2.

The integrals in Eq. 3 cannot be evaluated analytically

for the geometry of the device and therefore they must be

evaluated numerically. This task can be accomplished

through the annotated Mathematica� notebook provided as

supporting material.

Following this approach we can estimate that almost any

protein above 20 kDa can pellet from a solution at con-

centration c0 = 2 mmol/dm-3 at a centrifugation rate of

32,000 rpm.

On the basis of these numbers we can clearly understand

that any protein can be sedimented. What makes then the

real difference is the time required for completing the

sedimentation. To calculate it, one should only know the

sedimentation coefficient s of the biomolecule (easily

attainable by analytical ultracentrifugation and usually

quite well documented in the literature) and resort to the

integrated Svedberg equation:

t ¼ 2:533� 1011 ln b4=b0ð Þ
sf 2

ð4Þ

where f is the rotation rate in rpm, as it is commonly done

in the preparative ultracentrifugation.

It is important to remark that selective sedimentation of

the desired solute from a mixture of solutes with different

molecular weights can be attained by the classical differ-

ential centrifugation approach.

Overall, sample preparation for an experiment of sedi-

mented solute NMR by means of an ultracentrifugal device

can be summarized as follows:

• Choose the concentration and volume that will allow

for sedimentation (Eqs. 1–3) and will provide enough

material to fill the rotor;

• Choose the experimental time according to Eq. 4;

• Add the solution to the ultracentrifugal device and, if

needed, cut the funnel to avoid crushing;

• Run the ultracentrifugation;

• Seal the rotor through CRAMPS insert (4 mm), silicon

plugs (3.2 mm) or marker ink on the caps (1.3 mm).

This is necessary to avoid spilling of the solution and

possible probe damage.
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Oschkinat H (2011a) Enhanced resolution and coherence

lifetimes in the solid-state NMR Spectroscopy of perdeuterated

proteins under ultrafast magic-angle spinning. J Phys Chem Lett

2:2205–2211

Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L

(2011b) Site-specific measurement of slow motions in proteins.

J Am Chem Soc 133:16762–16765

Lewandowski JR, Van der Wel PCA, Rigney M, Grigorieff N, Griffin

RG (2011c) Structural complexity of a composite amyloid fibril.

J Am Chem Soc 133:14686–14698

Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J,
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